BDNF-Induced potentiation of spontaneous twitching in innervated myocytes requires calcium release from intracellular stores.
نویسندگان
چکیده
Brain-derived neurotrophic factor (BDNF) can potentiate synaptic release at newly developed frog neuromuscular junctions. Although this potentiation depends on extracellular Ca(2+) and reflects changes in acetylcholine release, little is known about the intracellular transduction or calcium signaling pathways. We have developed a video assay for neurotrophin-induced potentiation of myocyte twitching as a measure of potentiation of synaptic activity. We use this assay to show that BDNF-induced synaptic potentiation is not blocked by cadmium, indicating that Ca(2+) influx through voltage-gated Ca(2+) channels is not required. TrkB autophosphorylation is not blocked in Ca(2+)-free conditions, indicating that TrkB activity is not Ca(2+) dependent. Additionally, an inhibitor of phospholipase C interferes with BDNF-induced potentiation. These results suggest that activation of the TrkB receptor activates phospholipase C to initiate intracellular Ca(2+) release from stores which subsequently potentiates transmitter release.
منابع مشابه
/Calmodulin-dependent Kinase II Mediate Acute Potentiation of Neurotransmitter Release by Neurotrophin-3
Neurotrophins have been shown to acutely modulate synaptic transmission in a variety of systems, but the underlying signaling mechanisms remain unclear. Here we provide evidence for an unusual mechanism that mediates synaptic potentiation at the neuromuscular junction (NMJ) induced by neurotrophin-3 (NT3), using Xenopus nerve–muscle co-culture. Unlike brain-derived neurotrophic factor (BDNF), w...
متن کاملIntracellular Ca2+ and Ca2+/Calmodulin-Dependent Kinase II Mediate Acute Potentiation of Neurotransmitter Release by Neurotrophin-3
Neurotrophins have been shown to acutely modulate synaptic transmission in a variety of systems, but the underlying signaling mechanisms remain unclear. Here we provide evidence for an unusual mechanism that mediates synaptic potentiation at the neuromuscular junction (NMJ) induced by neurotrophin-3 (NT3), using Xenopus nerve-muscle co-culture. Unlike brain-derived neurotrophic factor (BDNF), w...
متن کاملCellular mechanisms regulating activity-dependent release of native brain-derived neurotrophic factor from hippocampal neurons.
Brain-derived neurotrophic factor (BDNF) plays a critical role in activity-dependent modifications of neuronal connectivity and synaptic strength, including establishment of hippocampal long-term potentiation (LTP). To shed light on mechanisms underlying BDNF-dependent synaptic plasticity, the present study was undertaken to characterize release of native BDNF from newborn rat hippocampal neuro...
متن کاملSuperoxide-induced potentiation in the hippocampus requires activation of ryanodine receptor type 3 and ERK.
Reactive oxygen species (ROS) are required for the induction of long-term potentiation (LTP) and behave as signaling molecules via redox modifications of target proteins. In particular, superoxide is necessary for induction of LTP, and application of superoxide to hippocampal slices is sufficient to induce LTP in area CA1. Although a rise in postsynaptic intracellular calcium is necessary for L...
متن کاملSpatially Restricted Actions of BDNF
In this issue of Neuron, Zhang and Poo present evidence for localized BDNF-induced synaptic potentiation that is accompanied by spatially restricted calcium influx and requires local axonal protein synthesis. These results are consistent with a synapse-specific role for BDNF and provide a potentially novel way to think about cellular mechanisms for potentiation of neurotransmitter release.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 84 1 شماره
صفحات -
تاریخ انتشار 2000